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Matched asymptotic expansions are used to describe turbulent Couette-Poiseuille 
flow (plane duct flow with a pressure gradient and a moving wall). A special modifica- 
tion of conventional eddy-diffusivity closure accounts for the experimentally observed 
non-coincidence of the locations of zero shear stress and maximum velocity. An 
asymptotic solution is presented which is valid as the Reynolds number tends to 
infinity for the whole family of Couette-Poiseuille flows (adverse, favourable, and zero 
pressure gradients in combination with a moving wall). It is shown that plane 
Poiseuille flow is a limiting case of Couette-Poiseuille flow. The solution agrees with 
experimental data for plane Couette flow, for the limiting plane Poiseuille flow, and 
for a special case having zero net flow and an adverse pressure gradient. The asymptotic 
analysis shows that conventional eddy diffusivity closures are inadequate for general 
Couette-Poiseuille flows. 

1. Introduction 
This paper studies the macroscopic structure of plane turbulent incompressible 

Couette-Poiseuille flows by means of limit process expansion techniques. The formula- 
tion is in terms of the conventional Reynolds time-averaged equations, subject to 
an eddy-viscosity closure postulate relating the Reynolds stress to the mean flow 
quantities. Such an approach has been employed to obtain solutions for plane turbu- 
lent Poiseuille flow (Yajnik 1970; Bush & Fendell 1972, 1974; Fendell 1972), i.e. flow 
in an infinitely long channel with plane stationary parallel walls, driven by an imposed 
constant favourable pressure gradient. Here, based on the methods developed for 
Poiseuille flow, solutions are obtained for plane turbulent Couette flow, i.0. flow 
between parallel surfaces moving with respect to each other, with no imposed pressure 
gradient; and, more generally, for plane turbulent Couette-Poiseuille flow, i.e. flow 
between parallel surfaces moving with respect to each other, and having an imposed 
constant favourable or adverse pressure gradient. In  this paper, it  is shown that 
Poiseuille flow is a limiting case of Couette-Poiseuille flow. 

Poiseuille flow has been investigated intensely, both experimentally and theoreti- 
cally, and it has remained of interest to the present time (cf., e.g., Hussain & Reynolds 
1975). Recently, a number of higher-order closure models has been introduced (cf. 
Reynolds 1976) for the purpose of extending to other flows the results obtained for 
turbulent Poiseuille flow. These models have had only limited success, and none of 
them predicts duct flows as well as the eddy-viscosity closure. In  the present work, 
the asymptotic description of the entire family of Couette-Poiseuille flows is sought 
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as the Reynolds number (based on the moving wall speed and the plane walls separa- 
tion distance) tends to infinity. In  accordance with the above remarks, only the 
simplest of closure hypotheses, which includes the essential physics of the flow, is 
advanced. 

Since the original investigation by Couette (1890), which was for circular geometry, 
Couette flow has remained of interest to researchers in fluid mechanics. Burgers (1922) 
and Heisenberg (1922) considered the nature of plane turbulent Couette flow, and 
von KBrmAn (1937) caIculated this flow using his similarity theory (cf. Robertson 
1959). However, because of the obvious difficulties in achieving fully-developed 
turbulent flow in a long channel with a mciving wall, plane Couette flow has not been 
investigated experimentally until recent times. Reichardt (1  959) and Robertson (1959) 
provided the first comprehensive measurements of averaged flow quantities in air, 
water and oil. The measurements of Chue (1969) are for plane Couette flow in a 
polymer solution; while Robertson b Johnson (1970) included (some) turbulence 
quantities in their measurements. Leutheusser & Chu (1971) used flowing water in a 
hydraulic flume as the moving boundary for the air above the flume to investigate the 
transition and low-Reynolds-number regimes of plane Couette flow. These various 
experiments have produced similar results, but with significant differences in the 
friction coefficients deduced from the measurements. The present theory results in a 
resistance law which lies approximately midway between the extremes of the data, as 
shown in Q 4.1. 

Plane Couette flow has also been investigated theoretically over the past twenty 
years. Reichardt (1956, 1959) used a quadratic eddy-diffusivity distribution in con- 
junction with his sublayer damping function, but found it necessary to develop two 
separate models to account for the high- and low-Reynolds-number data. Robertson 
(1959) used a mixing-length model to empirically fit his data. Szablewski (1968) used 
an exponential mixing-length model in an attempt a t  a unified description of plane 
Couette, plane Poiseuille, and pipe flows, and obtained a piecewise-continuous solution, 
which agreeswith Reichardt’s high-Reynolds-number velocity measurements. Korkegi 
& Briggs (1968, 1970) calculated compressible Couette flow, using a mixing-length 
formulation, and compared their results with Robertson’s data. Chue b McDonald 
(1970) used a piecewise-continuous eddy-diffusivity function to fit Chue’s data, and 
Leutheusser & Chu (1971) introduced three separate empirical correlations to fit their 
resistance data. Hoffmeister (1976) used a modified similarity theory to fit part of the 
data of Reichardt. All of the above analyses adjust various parameters to fit the 
experimental data, and none of them is valid over the full range of Reynolds numbers 
for turbulent flow. In  the present asymptotic analysis, a solution is obtained which is 
valid over the full range of Reynolds numbers and which does not rely upon fitting to 
the Couette flow skin friction data. 

Because of its importance to lubrication theory, efforts have been directed recently 
to the calculation of turbulent CouettePoiseuille flows, but experimental data for 
these flows are practically non-existent. Constantinescu (1959) introduced the use 
of Prandtl’s mixing length to turbulent lubrication theory; subsequent modifications 
to Constantinescu’s analysis were presented by Ng (1964). More recent analyses have 
involved numerical integration using different eddy-viscosity models for different 
regions of the flow (cf. Elrod & Ng 1967), and a version of Prandtl’s turbulence energy 
model, i.e. a (so-called) one-equation model of turbulence (cf. Ho & Vohr 1974). 
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Although the results of these two cited analyses are found to be in mutual agreement, 
it should be noted that both analyses are based on the conventional Reynolds stress- 
eddy-viscosity relationship, which does not take into account the possibility that the 
locations of the maximum velocity and zero Reynolds stress may not coincide. This 
non-coincidence has been established experimentally for duct flows with asymmetric 
boundary conditions (cf. Hanjali6 & Launder 1972; Rehme 1974). 

In the present paper, an essential modification, which allows for the treatment of 
Couette-Poiseuille flows having this non-coincidence, is introduced to a simple, but 
continuous, eddy-viscosity closure model. By means of this modification, it is possible 
to develop an asymptotic theory for the whole family of Couette-Poiseuille flows. 

In $2,  the equations of motion for plane turbulent Couette-Poiseuille flow are 
developed as a singular perturbation eigenvalue problem, with the (dimensionless) 
friction velocity appearing as the eigenvalue to be determined. The asymptotic solu- 
tions of the problem as the Reynolds number (based on the moving wall speed and the 
plane walls separation distance) tends to infinity, with the ratio of the shear stresses 
at the two walls held fixed, are presented in $ 3. The matching requirements near the 
two walls result in a friction velocity and a friction coefficient of the same asymptotic 
forms as previously found for plane Poiseuille flow (cf. Bush & Fendell 1972). Through 
an examination of the higher-order contributions of the asymptotic solutions, it is 
shown that the positions of maximum velocity and zero Reynolds stress do not 
coincide for the range of Couette-Poiseuille flows that has a local maximum in the 
velocity field. In  $ 4, there is a comparison of the asymptotic theory results with 
available experimental data for plane Couette flow, the limiting case of plane Poiseuille 
flow, and for a special case of Couette-Poiseuille flow, in which the ends of the duct are 
blocked creating a zero net flow, adverse pressure gradient condition (cf. Huey & 
Williamson 1974). The asymptotic theory is found capable of producing agreement 
with all of these data over the full range of Reynolds numbers investigated. 

2. Formulation of the problem 
2.1. The cquations of motion 

Consider the steady, two-dimensional, fully-developed turbulent Couette-Poiseuille 
flow of a fluid of constant density and viscosity (p*,  v* = consts.) between two parallel, 
plane, smooth walls of infinite axial extent, with the lower wall fixed and the upper 
wall moving at  a constant speed (see figure 1).t Let 

X* = h*x, y* = h*y (2.1) 

represent the co-ordinates tangential and normal to the fixed lower wall, with h* the 
normal distance between the walls. The mean velocity components in the x* and y* 
directions, and the applied mean axial pressure gradient are 

u* = u*(y*; *. .) = v* u ( y ;  . . .), v* = 0, (2.2) 

dp* p*V*2 
dx* h* P( ...) = const., P* = P*( ...) = -- = - 

t Hero, all dimensional variables aro donotod by a superscript astorisk. 
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c % V* 
Moving wall - 

Stationary wall - 
TiO) 

FIQURE 1. Definition aketoh for Couette-Poiseuille flow. 

where V* is the constant speed of the moving upper wall. The relevant Newton 
laminar stress and Reynolds turbulent stress, respectively, are 

7: = 73y*;  ...) = -p*(U*'w*') = p*s* [;: -- #*I 
p*v*2 du 

7R(y; ...) = (V*h*/v*)" [&-'I' - p* V*2 
- (V*h*/v*) 

In  the closure model for the turbulent stress of (2.5), s*(y*; ...) = v*s(y; ...) is the 
kinematic eddy viscosity; the additional closure function S* = S*(. . .) = ( V*/h*) S( .  . .) 
has been introduced to take into account the non-coincidence of the positions of 
maximum velocity yg = yg(. . . ) = h*ym(. . .) and zero turbulent stress y: = y:(. . .) = 
h*yn(.. .), which generally occurs for combinations of V* and P* that yield a velocity 
extremum within the flow field (see figure 1), i.e. in terms of non-dimensional 
variables (for suitable combinations of V* and P*), 

Although this non-coincidence is well documented for duct flows with asymmetric 
boundary conditions (cf., e.g., Hanjalid & Launder 1972; Rehme 1974), hitherto, it has 
not been taken into account in the analysis of Couette-Poiseuille flows. It should be 
emphasized that, at this point, the (non-dimensional) function S is unknown, and 
must be determined in the course of the solution of the present problem. 
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The total shear stress is the sum of the laminar and turbulent contributions, i.e. 

7* = 7*(y*; ...) = (7;:+7*n) 

In the analysis that follows, it is taken that the Reynolds number R = ( V*h*/v*) + 00. 

In the domain - 03 < x < 03, 0 Q y Q 1, the non-dimensional boundary-value 
problem for fully-developed turbulent Couette-Poiseuille flow, in terms of the 
quantities introduced, is given by 

- p  =--= 1 d7 -- 1 d (du -+s [z -- .]) = const.; 
R d y  R d y  d y  

u + O ,  si.0 as y + O ,  

u + 1 ,  S i . 0  as y i . 1 .  

(2 .8a )  

(2 .8b )  

Integration of (2 .7 )  over the domain of y, subject to the boundary conditions of 

( 2 . 9 a )  - P = - [ ( - )  1 d u  -(e) 1, (2.8),  yields 

R dY (1) dY (0) 

for (2 .9b)  

Further, from the above, it is seen that (2 .7 )  has a first integral, which may be 
expressed 8s 

where 

(2 .10a)  

(2 . lOb)  

(2.1 1 a) 

(2.11 b )  
P P 

Further, it is noted from (2.11 b )  that 

(2 .12a)  P(O)P(l) - N O )  +P(d = 0 

P(1) Pa) * p(o) = - 7 = - 
(1 P(lJ (P(1) - 1) ' 

(1 P(0J  (A01  - 1 )  - 
p(*=-: P(0 )  =- P(0 )  (2.12b) 

In general, upon the specification of s ( y ;  R, P )  (see $ 2 . 2 ) ,  what is sought are the 
Rolutions of the boundary-value problem ( 2 . 1 0 ~ ~ )  or (2 .10b)  and (2 .8 )  for u ( y ;  R, P) and 
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7(o,(R, P )  and T(l)(Re, P). Here, the pressure gradient parameters P,,(R, P )  and 
&(R, P )  are considered to be given fixed quantities, and the asymptotic solutions 
to the above-mentioned boundary-value problem are sought in the limit of R + 00.7 

Specifically, (i) for 7CO)(R, P )  = ~(O)(R,P(~))  = U:(~,(R,B(~)) > 0, such solutions are 
sought in the limit of R+ (withu,(o)(R, /3(oJ + 0, 5(odR, ,&)I = R u,(o)(R, &)I -+ 001, 
0 < p(o) < 2; while (ii) for 7(1)(R, P)  = 7(1)(R,P(1)) = u:(l,(R,/3(l)) > 0, these solutions are 
sought in the limit of R + 00 (with u,(l)(R,/3(l)) + 0, &l)(R,P(l)) = RU,&,&)) +a), 
0 < /3(1) < 2.1 From (2.11), it  is seen that /3(o), /?(l) = 0 corresponds to plane Couette 
flow, with P = 0, T ( ~ )  = T ( ~ ) .  Further, from (2.11), it  follows that /9(o) + 1, 1/3(1)1 + 03 

corresponds to zero stress at the moving wall, i.e. 7(1) = 0; while /?(l) + 1, I/3(o)l -+ 00 

corresponds to zero stress at the stationary wall, i.e. 7(0) = 0. It is found that the case of 
,&, + 2, with proper rescaling of velocity, corresponds to plane Poiseuille flow, 

where 7(1) = - 7(0, (cf. Bush & Fendell 1972). The condition for a velocity extremum 
to  exist in the flow field, i.e. (duldy) = 0, such that u = urn at y = ym, is seen to 
be 1 < ,19,, < 2 or 1 < /3(1) < 2. 

Based upon the preceding considerations, the following boundary-value problem is 
stated : 
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~ ( 0 ;  R,B) = 0, ~ ( 1 ;  R,p) = 1, (2.13) 

and 40;  R, p, = E ( 1  ; R, P )  = 0, where p = &I), U7(R, p)  = U,(O)(R, P ( O ) ) ,  and 4y;  R, B)  = 
qO)(y; R, /3(o)) for 0 < /3 < 2. By appropriate translation and reflexion of the co- 
ordinate system, etc., this domain of p encompasses the entire family of Couette 
Poiseuille flows. It should be noted that, for this analysis, /3 is considered to be a 
known constant of order unity, even though this parameter depends on the applied 
pressure gradient P and the friction velocity u,, through /3 = P/u:. Here, the pro- 
posed method of solution is to determine u, = u,(R, p)  and, in turn, to determine P = 
P(R,,8) = Pu,2(R,p). For the case of Couette flow, ,8 = 0; for the case of Poiseuille 
flow, p + 2; while, for the case of zero net flow, as previously noted, it is determined (cf. 
54.3) that /3 = P(R) = 1 +a(R), with a(R) + 0 as R -+ 00. Thus, for these cams, 
with ,8 specified, it is possible to determine P = P(R)  (cf. (4.15) for the zero net 
flow case). Mathematically, this approach (of obtaining solutions of the problem for 
R + 00 and for B = O(1)) is the only practical one available. That i t  is a realistic 
approach is justified by the results obtained, especially those for the case of zero net 
flow. 

2.2. The eddy-viscosity model 

In  order to solve the foregoing boundary-value problem, the kinematic eddy viscosity 
8 must be specified. Since the objective of the present work is to demonstrate that 
Couette-Poiseuille flows can be determined with good accuracy through the use of 
simple closure models, the following zero-equation model, with E = s(y ; R, p)  specified, 

t In $4.3, the case of B(o)  E /3 = B(R) 3 1 +a(R),  with a(R) + 0 as R + co, L studied. 
$ Consistent with these formulations, the eddy viscosity should be expressed aa 

dg; R, P )  = E(o>(Y; R, b’to)) = E ( ~ ) ( Y ;  R, p(1)). 
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is adopted here (cf. Bush & Fendell 1972) : 

4y; R, P, = 6(R, P )  K(y; R, P )  
= 6(R,P) [ M ( y ;  P )  i Y o ) ( V )  iYd6)I) (2.14) 

where E(R,P) = KRu,(R,P) -+ co as R -+ 00, 0 < /3 < 2;  ( 2 . 1 5 ~ )  

7 = 6Y, 6 = E ( 1 - Y ) .  (2.15b) 

Thus, for 6 -+ co with y fixed, 9 = 6y -+ 00 and 6 = t( 1 - y) -+ co. Further, for 6 + co 
with 7 fixed, y = (T,I/() -+ 0 and 6 = (6-  7) -+ 00; while, for 6 -+ 00 with 6 fixed, 
y = 1 - (615) -+ 1 and 7 = (6-  6 )  + co. For the development presented, the functions 
M ( y ;  P) andqo)(r]), N,&),respectively, are taken to have the following representations : 

M ( y ;  P )  = Y(1-9) PI 

(2.16) 

@,,(t) = [l -exp (-t/A(,))12, i = 0, 1. (2.17) 

In these equations, the following constants have been introduced: the von K&rm&n 
constant K = 0-41, and the damping constants A,,), Atl) + 6.9. The form of Q(y; P )  in 
(2.16) is chosen to give a continuous behaviour of the results between plane Couette 
flow (P = 0) and the limiting plane Poiseuille flow (a -+ 2), i.e. for 0 < P < 2. In  (2.16),  
D(y ; /3) has the following behaviours : 

D(y;  P)cc {y(l - Y ) } ~  -+ 0 as y -+ 0,1, P fixed; 

D(y;/?)ccP-+O as /3+0, yfixed. 

In 0 3.5, relations are derived which D(y; 8) must satisfy for 1 < ,8 < 2 .  In (2.16),  the 
linear behaviour of M(y; P )  as y-+ 0, 1 is consistent with the logarithmic velocity 
distribution required by Prandtl’s law of the wall and von Kkm&n’s velocity-defect 
law (cf., e.g., White 1974). In (2 .17))  the form of .Ai,,(t) is the eddy-viscosity version of 
the Van Driest mixing-length ‘exponential ’ damping function (cf., e.g., White 1974; 
Reynolds 1976). 

2.3. The basic formulation 

For the analysis, based on the given eddy-viscosity model, consider the following 
restatement of the boundary-value problem. The governing differential equation can 
now be written as 

Y(1 -!I)&(?/; P ) 4 0 ) ( 6 Y ) % ( 5 ( 1 - - Y ) )  E ( Y ;  6 , / 3 ) - W ) ]  

(2.18) 

with R = K~ R, ii, = u , / K ,  such that 6 = Rii,. The relevant boundary conditions 

1 du +-- (y; E3P)-%(5,P)(1-PY) = 0, 

N 

5dY 
N 

Since (2.18) is a first-order equation with two boundary conditions (i.e. those of (2.19)),  
(2.18) and (2.19) constitute an eigenvalue problem, where G,((, P )  is the eigenvalue to be 
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determined in the limit of 6 + 03 for 0 < P < 2. Additionally, the solution of this 
eigenvalue problem leads to the determination of S(g,P) as 6 -+ CQ for 1 < /3 .c 2. 

3. Asymptotic solutions 
In  this section, the solutions to the singular perturbation eigenvalue problem of 

(2.18) and (2.19) are sought. These solutions are obtained through the use of limit 
process expansion techniques (cf., e.g., Cole 1968; Bush & Fendell 1972, 1974), where 
the velocity field in the core region of the duct is matched to the velocity fields in the 
regions near the two walls. The eigenvalue CT(6,P), which is determined from the 
matching requirements, leads to the friction law C, = C,(R,P), where the friction 
coefficient is defined by C, = 2u,8 = Z(~.i i . , )* .  

3.1. Core region expansions 

When the core region of the duct is taken to be a turbulent defect layer (cf. Bush & 
Fendell, 1972, 1974), the appropriate spatial variable is y, and the complementary 
velocity variable is 

where, subject to verification, it is taken that C,(& /3) + 0 as E+ CQ, fixed. Thus, for 
this limit, u(y; &/?) + U ( B ) ,  a constant (to be determined). Since T,I = ty  + 00 and 
5 = [(i - y) + 03, such that q 0 ) ( q ) ,  i&(c) + [l - O(exp ( - Q)], as 6 + 03, with y fixed, 
(2.18), in terms of the core defect layer variables, is given by 

where H(6,  P )  = S(6, P)/C,(E, PI. 
Consider that the function F(y;  6,P) and the parameter H ( 6 , p )  are taken to have 

( 3 . 3 4  

(3.3b) 

with pol(E), a parameter (to be determined), which satisfies po1(t) -+ 0, Epol(E) -f co as 
c+O3. 

the following asymptotic expansions : 
1 

*(!I; 5,B)  = Po(% P)+Po1(6)Fo1(Y; P ) + - p ! ! ( Y ;  B)+ . * . 9  

1 
m t - 9  P )  = HO(P) +POl(O HOl(P) + 5 Hl(P) + * * * Y 

Substitution of (3.3) into (3.2) and collection of terms of equal order yields 

y ( i - y ) Q ( y ; P ) [ T ( Y ; B ) - H o ( P ) ]  d%, = (I-&); (3 .44  

y(1- Y) Q(Y; B)  [2 (Y; P )  - HO1(P)] = 0; . . . . (3.4b) 

The solutions of ( 3 . 4 ~ )  and (3.4b) are 

Po(Y ; P )  = Ho(P) Y + Q O C P )  + {log Y - ( 1 - PI log ( 1 - y I} + )(2 - 8) y(2 - BY)  + @,(Y ; P) ,  
(3.5a) 

P )  = ~ O l ( P ) Y + ~ O l ( P ) ,  (3.5b) 
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where Co(P), Col(P) are integration constants (to be determined), and 
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@, (y ;  P )  = lov [s] D ( t ;  P ) d t ,  with Go(1; P )  = Yo(P). (3 .5c)  

These solutions are based on &(y;  P )  as defined by (2 .16 ) .  Thus the asymptotic repre- 
sentation for the core region velocity is 

u(Y;  E,P) = u o ( Y ;  E,P) 
= u ( P ) + E r ( t , P )  (F,(Y; P ) + P ~ ( E ) P O ~ ( Y ; P ) + O  (i)) * (3 .6)  

where the functions Po, Pol are given in (3 .5 )  

regions, the behaviours of ucC)(y; E,P) as y + 0 , l  are required. For y -+ 0,  (3 .6 )  yields 
For the purpose of matching the core region velocity solution to those for the wall 

u(ciY; E,P)  u ( P ) + G r ( t t P )  ([-log (i) + G , ( P ) + ( H , ( P ) + ( ~ - ~ P ) } ~ + . . . ]  

+POl(E) [ ~ O l ( P ) + ~ O l ( P ) Y l +  ...) - ( 3 . 7 4  

- {Ho(P) + 1 + ( 1 - P )  (2 - 8,) 2 + . . .] 
+POl(E) ~ ~ ~ 0 1 ~ P ~ + ~ 0 1 ~ ~ ~ ~ - ~ 0 1 ~ ~ ~ ~ 1 +  ...) (3 .76)  

For z = (1 - y )  + 0, ( 3 . 6 )  yields 

u(c)(Y; E,P) U(P)+WE,P)  ( [ ( W ) l o g  (:) +{CO(P)+HO(P) + * ( 2 - P ) 2 + y o ( P ) }  

When the core region velocity solutions are matched to the wall regions velocity 
solutions, i t  is found that the intermediate terms of O(pOl(t)), ... are necessary to 
achieve the matching for non-zero Ho(P), Hol(P),  Hl(/3), . . . . Although theseintermediate 
terms, which do not appear in symmetric duct flows (cf. Bush & Fendell 1972), are 
necessary for matching at this stage, arguments are presented in $3.5 that these 
contributions, i.e. Ho1(P), . . . , are zero. 

3.2. Stationary wall region expansions 

For the stationary wall region of the duct, the appropriate spatial and velocity 
variables are taken to be 

Since y = (r/E) -+ 0 and 6 = ( E -  7) + 00, such that &(7/[; P )  --f [l - ( 2  -/3) (r/E) + 
0(1/E2)] and q1)(E-7) -+ [1 -O(exp (-[))I, as6 -+ 00, with 7 fixed, (2 .18)  and (2 .19) ,  
in terms of these variables, with q o ) ( q )  = N ( q ) ,  are 
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Consider that the function f (7; E,p) is taken to have the following asymptotic 
expansion : 

( 3 . 1 4 ~ )  

(3.14b) 

Thus, the asymptotic representation for the stationary wall region velocity is 

u(Y; 598) = U(O)(T 578) 
=.ii,(5,8) (f0W P ) + p ;  P)+-f1a(7; POl(5) P ) + O  (i)) 9 (3.15) 

1 

5 
where the functionsfo,fl,f12 are given in (3.13). 

wall region velocity solution to that for the core region, i.e., uk)(y; 5,P) as y 
7 3 00, (3.15) yields 

The behaviour of q0)(q;  5, 8) as 7 + oo is required in order to match this stationary 
0. For 

uco,(7; 598) .ii,(ts,B) ([log?l+J+ *.*I 

+ 5 [{Ho(8) + (3 - 28)) 7 - {Ho(8) + 3(2 - 8)) 1% 7 + . a .  1 

+/tolf5) [Hol(/3)q+ ...I+...).  
ts (3.16) t 

t In the solution of (3.12a), the integral (3.14a) is a consequence of e(y; 6, p) -+ y aa y + 0, 
modified by iVto)(v), aa in (2.14). Since this linearity is required (cf. (2.16), et eeq.), and since it is 
taken that the damping function depends only on 7 and not on p, Io(q) can be regarded aa a 
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FIGURE 2. Numerical evaluation of (3 .14~) .  

D 

A comparison of (3.16) and ( 3 . 7 ~ )  shows that the stationary wall region and core 
region velocity solutions match if 

U ( 8 )  + W Y  8) [CO(P) +Po&) corn + * * *I 
= %(E,P) ~ ~ ~ ~ E + J 0 - 1 1 0 ~ ~ ~ ~ ~ ~ 0 ~ 8 ~ + 3 ~ ~ - 8 ~ } +  .*-I ,  (3.17a) 

with 110l(E) = 1% E. (3.17 b) 
For further details concerning the matching process as applied to turbulent channel 
flow, the reader is referred to the papers by Bush & Fendell (1972,1974). This matching 
condition (3.17) will be used, together with a complementary matching condition for 
the moving wall region and core region velocity solutions, to determine the eigenvalue 

3.3. Moving wall region expansions 
For the moving wall region of the duct, the appropriate spatial and velocity variables 
are taken to  be 

W E 9  8). 

(3.18), (3.19) 

universal function for all duct flows and its limit lo(co) = J, as a universal constant similar to 
von KBrmBn’s constant K.  Figure 2 shows the numerical determination of lo (q)  for 

N(4 = 11 -0XP (-vA(o))ls, 

with A(, )  = 6.9. As can be seen, 1,(q) approaches a fixed limit as q + a, namely, J, = 2.95. In  
terms of the conventional wall region variables yf = y*uf/v* = ? / K  and uf = u*/uf = f / K ,  

(3.16) yields, to leading order of approximation, 

1 
u+ = -logy++b, ,where b = 

K 

For K = 0-41 and J, = 2.95, it is found that b = 5.0, which is the accepted value (cf., e.g., 
White 1974; Hussain & Reynolds 1975). 

As q + O ,  1,(v) N +q2[1-#q+O(q2)]+0. Thus, ( 3 . 1 3 ~ ~ )  yieldsfo(v;/3) N q[l+O(qS)]-+O as 
q -+ 0, which is the characteristic linear velocity distribution of the viscous sublayer very near 
the wall (of. Bush & Fendell 1974). 
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U(P) + w, B) [{CO(P) + H O V )  + H 2  -P)2 + YO(P)} +po1(5) {CO,(P) + HO,(P)} + * ..I 
= -'%(ESP) [(I -P)logt+ ( 1 - P ) J o - p o I ( [ ) { & ( / f )  + ( 3 -  2 p )  ( 2 - / f ) } +  ... 1. (3.26) 

This equation, (3.26), is the other matching condition which, in combination with 
(3.17), yields CT(5,/3). 

3.4. The friction law 

For what follows, it is convenient to re-express (3.17) and (3.26), respectively, as 

U(P) - WE, B, [log E - {CO(P) - Jo} 

-- 1ogE{Col(P)+Ho(~)+3(2-P)}+ ...I = 0; ( 3 . 2 7 ~ )  
6 

U(P) +C7(5,P> "1 - P )  log5+ {C,(P) + H O W  +?I@ -P,"+'ro(P) + (1  -P)J,} 

+w{Col(P) +Ho,(P) - Ho(P) - ( 3  - 2/3) (2  -p) }+  .. .] = 1. (3.27b) E 
The combination [(l - P )  x ( 3 . 2 7 ~ )  + (3.27b)I yields 

OCP) +a,(& P )  [{CO(P) +&B) + 4(2 -8) + 90(8)) 

+ y{col(P, + fiOl(8) - P(fi0(P, + 1 )} + . . . I = 1, (3.28) 

where (3.29 a )  

It= ( 2 - 8 )  u; (3.293) 

yo Bo1= H,, ... . ( 3 . 2 9 ~ )  
h 

(2-PI'  
Yo = - 

( 2  -P)  ' (2--BY 

It(/3) = 1 =- U ( P )  = -* 

CO(P) = - { f i o ( P )  + *(2 - P )  + 9o(P)} ,  

HO A, = - 
From (3.28), it follows that 

(3.30 a)  1 

(2 -A' 

COl(P, = - { f i O l ( P )  -P(fio(P, + 1% * * * * (3.30b) 

The combination [(3.27b) - (3.27a)l yields 

( 3 . 3 1 ~ )  

where @ o ( P ,  = Jo + f i o w  + 6(2 - P )  + $ O t P , >  
( 3 . 3 1 ~ )  

(3.31 d )  
@ O l ( P )  = from - %fiO(P) + (3  -P$ * *  * * 

The asymptotic solution of (3.31b) for fie + 03, P fixed is determined to be 

(3.32 a )  
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In turn, it is determined, based upon (3.29a), that 

+...I y (3.333) 
1 1  log log R + log (2 -8) -Eo(/3) 

log R 
a,(Ry8) = - - [ 1 + 

(2 - 8) log R 

Thus, it is seen from (3.33) that .ii,(R,p) -+ 0 and k(R,p) = RC,(R,p)  -+ co as 
2 + 00, 8 fixed, as was presumed at the beginning of the analysis. These equations, 
(3.33a, b), have the same asymptotic forms as the ones obtained by Bush & Fendell 
(1972, 1974) for plane duct flow without a moving wall. By definition, the friction 
coefficient is 

C,(R, 8) = 2u:(R, 8) -+ 0 as R -+ co, 8 fixed, (3.34a) 
where u,(R,B) = ~ii ,@,B),  with R = K ~ R ,  

The asymptotic solutions for a,(&,/?) and a,@, B),  respectively, are given in (3.323) 
and (3.333). Further, with the determination of u,(R,B), the pressure gradient 
function P(R,/?) follows, i.e. 

With the evaluation of the constants (cf. (3.30)), to leading orders of approximation, 
the core region velocity solution (cf. (3.6)) can be re-expressed as 

P(R,B) = Puf(R,/3) = &PC,(R,B) +- 0 as R -+ co, 8 fixed. (3.35) 

1 
uo(?I; EY8) = - 

(2 - 8) 

To leading orders of approximation, the stationary wall region and moving wall region 
velocity solutions of (3.16) and (3.24), respectively, are 

(3 .374  
(3.373) 

Through the combination of these asymptotic representations, a composite expansion 
can be obtained (cf. Cole 1968), which is uniformly valid across the duct as -+ co, 

fixed. This uniformly valid asymptotic representation for the velocity is determined 
to be 

%(0)(11 ; 5, 8) z .ii,(t, 8, ([log ( 1 + 11) + 10(11)l+ . . . ) ; 
u(d6; E,  8) ,z 1 -a,(!$,P) (“ 1 - B )  {(log (1 + 6) + 10(6,)1+ ... 1. 

U‘”’(Y; E, 8) = E l 2  + %(E, 8) ([{Ho(B) Y + Q(2 - 8) Y(2 - BY) + @,(?I; B))  
( 2 - 8 )  

+ (1% (1 + EY) + 1o(EY)) - (1 -8) (1% (1 + E(1 -Y)) + l o ( E ( 1 -  Y))) 
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3.5. Determination of H ( [ , p )  
From the analysis presented, the [-dependence of H ( [ , p )  has been determined (cf. 
(3.33)), but the p-dependence, represented byHo(/3), Hol(/3), . . . , is, as yet, not specified. 
Let yd(/3) be the co-ordinate where the core region velocity defect is zero (cf. (3.1)). 

(3.39) 
Thus, by definition, 

In the range 1 < /9 < 2, the velocity profile has a local extremum at y&). Therefore, 

(3.40) 

In this range of p, yd(& = ym(p); otherwise, yd(8)  would not be a single-valued func- 
tion. Hence, for 1 < ,8 < 2, (3.39) and (3.40) provide sufficient information to deter- 
mine Ho(p),Hol(/3), ... . Substitution of ( 3 . 3 ~ )  into (3.39) yields 

p(yd(d(rB); 6, p )  = O* 

dF - (?/,(B); 6,P) = 0, 1 < p < 2. 
dY 

FOb(Yd(Bh B),  pol(Yd(P); 8), * - .  = 09 

or, based on (3.5) and (3.30), 
1 

{logyd(8)+ (p- l ) l O g ( l - ~ d ( ~ ) ) } - H O ( ~ )  (w)-Y"'B)] 

-&(2-8){1 -?./d(p) ( 2 - ~ ~ d ( ~ ) ) } - ( ~ ) y O ( ~ ) - o O ( ~ d ( ~ ) ;  1 a)) = O ,  (3*41a) 

Hol(,8) = 0, ... , for 1 < ,8 < 2. 

Substitution of (3.423) into (3.41b) yields 

(3.423) 

Ho(/3) = - (2-8) and/or = - 1 for 1 < /3 < 2. (3.43) 

Thus, Ho(j3) -+ 0 as /3 -+ 2, which is required for the limiting case of plane Poiseuille 
flow (i.e. ym and yn coincide as /3 +- 2, as symmetry demands). 

In turn, it follows that, for 1 < p < 2, (3 .42~)  and (3.41u), respectively, with 
HO(B) = - (2 -P ) ,  yield 

(3 .44~)  

1 
yO(b)-@O(yd(p); p) = {10g!/d(8)+(p-1)10g(1 -yd(p))}  

(2-8) 
+ 1-3(2-B)(1+BY$(P)). (3.443) 

Thus, with Yo(p) and @,)(yd(p); p)  specified by (3.5c), it  is seen that ( 3 . 4 4 ~ )  and (3.443) 
form an integral relation in yd(/3) and D(y,(p);  p), which any proposed closure function 
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must satisfy. Although the asymptotic theory cannot generate the closure functions for 
a particular problem, it does provide constraining conditions which proposed func- 
tions must satisfy for correct modelling, as has been shown previously (cf. Bush & 
Fendell 1973). 

Hence, (3.43) shows that Ho(/3) < 0 for 1 < /3 < 2, i.e. y,(B) is displaced farther from 
the (stationary) wall with the larger shearing force than is y,,(/3), which is true for other 
asymmetric duct flows (cf. Hanjalid & Launder 1972; Rehme 1974). Previous numerical 
CouettePoiseuille flow analyses have assumed H(&/3)  = 0 for all /3 (cf., e.g., Elrod Q 
Ng 1967; Ho & Vohr 1974; Huey & Williamson 1974). 

The result, (3.43), implies that the intermediate term, Pol(y; /3), in the core region 
expansion (cf. ( 3 . 3 ~ ) )  is zero for 1 < /3 < 2. If this intermediate term had not been 
introduced initially, (3.43) would have resulted from matching requirements over the 
whole domain 0 < 

Eol(y; 8) = 0 for 0 < /3 c 2, 

c 2, i.e. 

H,,(/3) = 0; Ho(/3) = -(2-/3) for 0 < /3 < 2. (3.45) 

Now, because the Couette flow (p = 0) velocity profile is antisymmetric, it might be 
supposed that H ( [ , O )  should be zero (although, for 0 < /3 < 1, H ( [ , / 3 )  does not have 
the same interpretation that it does for 1 < /3 < 2); however, for continuity of H(5,,19), 
here, it  is taken that Ho(/?) = - (2 -/3), Hol(p) = 0, . . . over the whole domain 0 < p c 2. 
I n  the following section, it is shown that this assumption leads to agreement with the 
Couette flow experimental data. 

4. Results 
I n  this section, the solutions presented in the foregoing analysis are compared with 

available experimental data. Because of the difficulty in the realization of plane 
Couette-Poiseuille flows, the amount of experimental data is meagre. A number of 
experiments have been performed for plane Couette flow (p = 0) and for plane 
Poiseuille flow (/3 -+ 2), but, for general flows (0  c /3 < 2), only one source of data, for 
/3 -N 1, is available. I n  the following, comparisons are presented for these three cases, 
i.e./3=0,,9+2,and/3= 1. 

4.1. Plane Couette $ow 
The only experimentally determined eddy viscosity data available for plane Couette 
flow (/3 = 0) are those of Reichardt (1959). These data show that &(y; 0) = 1 (cf. (2.16)) 
is an excellent approximation when the parameter S(& 0) = C&, 0) H(5,O) is taken 
to be zero. However, in 5 3.5, it is shown that H ( [ ,  0) N Ho(0) = - 2 for a continuous 
asymptotic solution for all 8. It is for this reason that the term in the denominator of 
(2.16) is included, such that &(y; 0) = [l + 2y(l -y)]-l, Ho(0) = - 2 is the equivalent 
description of &(y; 0) = 1, Ho(0) = 0. Based in this way on Reichardt’s eddy-viscosity 
data, the friction coefficient (cf. (3.33) and (3.34)), 
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FIGURE 3. Couette flow friction coefficient v e r m  Reynolds number. -, calculation based on 
(4.1); -*- , C, = 2 / R  (laminarflow); A, Couette (1890), circular flow; A,  V, Reichardt (1969), 
air and water; 0, Robertson (1959); 0, Robertson & Johnson (1970); 0,  Chue & McDonald 
(1970); 0, Leutheusser & Chu (1971). 

is compared to the available data in figure 3. There is reasonable overall agreement 
between the data and the asymptotic theory. There is some discrepancy between the 
data of Reichardt (1959) and Robertson (1959), and some discussion has appeared in 
the literature as to which set of data represents the correct friction coefficient. The 
present analysis finds the friction coefficient to lie between the two sets of data, when 
the theoretical results are based on K = 0.41 and J, = 2.95, which agree with plane duct 
measurements (Hussain & Reynolds 1975). The low-Reynolds-number data of 
Leutheusser & Chu (1971) are not in good agreement with the asymptotic theory, and 
this discrepancy remains even when higher-order terms are included in (4.1). However, 
as is shown in figure 4, a relatively small error in the measured Reynolds number could 
be the source of this discrepancy. Figure 4 shows that the asymptotic theory covers 
the entire turbulent regime, from the strong variation of C, for moderate Reynolds 
numbers to the weak logarithmic decay to zero for large Reynolds numbers. 

It must be noted that the majority of the data points in figures 3 and 4 were not 
obtained from direct shear stress measurements. Rather, these points were inferred 
from velocity profile measurements in combination with a theory relating the slope of 
the velocity profile and the shear stress at the wall. Figure 5 compares the velocity 
measurements of Reichardt (1959) with the composite expansion (cf. (3.38)), 

The thinning of the wall layers and the flattening of the core region velocity profile 
(dC)(y; 5 , O )  + Q as 2 + co) are evident as the Reynolds number increases. Reichardt 
(1959) found it necessary to introduce two analytical models to fit the low-and-high 
Reynolds-number data, and concluded that his data a t  R = 11 800 were in error 

4 FLY 96 
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FIUURE 4. Couette flow friction coefficient v e r m  Reynolds 
number. Symbols as in figure 3. 

u + 0 2 k  
FIUURE 6. Couette flow velocity profiles. -, calculation based on (4.2) ; 0, 0, A, data 

of Reichardt (1969) for R = 5800, 11 800 and 68000, respectively. 

because of lack of agreement with the models. In fact, these measurements are in good 
agreement with the present asymptotic theory results, as is shown in figure 4 (some of 
the measurements in oil at R = 5800 are noti n as good agreement). The velocity 
measurements of Robertson & Johnson (1970) are also in good agreement with the 
results of the present theory, at least in the overlap region, as is shown in figure 6.t 

t The data of Robertson t Johnson (1970) are inaccurate very near the wall, as these authors 
indicate. However, in the overlap domain, where their measurements are more accurate, the 
results of the present theory for the wall regions, baaed on the Van Driest exponential-decay 
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Thus, the discrepancy between the friction coefficients of these two sets of data appears 
to be due not so much to errors in velocity measurements, but more to the inaccurate 
deduction of C, from the measurements. 

4.2. Plane Poiseuille $ow 
In  $8 3.4 and 3.5, it  is shown that the maximum velocity for 1 < /? < 2 is given by 
U ( 8 )  = 1 / (2 - /3 ) .  Hence, the A-superscripted variables in $3.4 refer to Couette- 
Poiseuille flow scaled on the maximum velocity, instead of the moving wall velocity. 
In  particular, the theoretical Poiseuille flow friction coefficient, given by 

+...I, (4.3) 
2K2 log log a - Bo( 2) 6@, 2) = 2(K&,(ft, 2))' - [ 1 -k 2 

l o g 4  log a 
is compared in figure 7 with the measurements of Hussain & Reynolds (1975).  Based 
on this comparison, it is determined that 

B0(2) = (Jo- 1)+$'0(2) = 2.60 ( 4 . 4 ~ )  

+ Y 0 ( 2 )  = B0(2) - (Jo- 1 )  = 0.65. (4.4b) 

As stated in the introduction, plane Poiseuille flow is the limiting case for the 
Couette-Poiseuille flow solutions presented in 9 3. To investigate this limit, consider 
a = ( 2  -8) and 6(a) = (yd(/3) - 4) as a, 6(a) --f 0. In this limit, ( 3 . 4 4 ~ )  yields 

h 

44 = H i -  t&(B; 211 4 1  + O(41, (4 .5 )  

where &(&; 2 )  i 0.30 (cf., e.g., Hussain & Reynolds 1975); while (3.443) yields 

( 4 . 6 ~ )  

(4 .6b)  

Thus, (4 .5 )  indicates that the defect distance approaches the value Q linearly as the 
plane Poiseuille flow distribution is approached. It is noted that the zero Reynolds 
stress location is y,(p) = 1 / /3 ,  such that, in this limit, 

{Yn(P) -Y,(/?)I = I&(&; 2 )  ( 2  -PI [ I +  0(2- /3)1* (4.7)  

Further, (4 .4b)  and (4 .6b)  provide the following integral conditions that D(y;  2) must 
satisfy (cf. ( 3 . 5 ~ ) ) :  

J' [-I D(y;  2 ) d y  = 0,  IO1 [Ad D(y; 2 ) d y  = \Eb(2) = 0.65; ( 4 . 8 ~ )  
0 Y ( 1 - Y )  

D(y; 2 ) d y  = a,(&; 2 )  + 1.04. (4 .8b)  

It is noted that the first integral of ( 4 . 8 ~ )  implies that D(y; 2) is symmetric about y = 4. 

model for the damping function, are in good agreement with these experimental results. Further, 
the theoretical results for the wall regions, based on this damping function model, are in excellent 
agreement with the experimental results of Hussain & Reynolds (1975), which incorporate more 
accurate near-wall measurements. Based on these comparisons, this exponential-decay model 
was employed throughout the present theoretical analysis, and the surface-renewal or algebraic- 
decay model was not considered. 

4-2 
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FIGW 6. Couette flow velocity profile in wall variables. __ and - - -, calculations based on 
(4.2) for R = 66000 and 28200, respectively; 0, 0, 0, V, A, data of Robertson & Johnson 
(1970) for R = 28200, 37640, 47200, 66400 and 66000, respectively. 
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FIQWRE 7. Poiseuille flow friction coefficient v e r w  Reynolds number. -, calculation 
based on (4.3); A, data of Hussain & Reynolds (1976). 

4.3. Zero net Jlow 
For ~9 p 0,2, the only source of experimental data available is for the zero net flow 
experiment (of. Kuey & Williamson 1974). In this experiment, the ends of ,the plane 
duct with one moving wall are blocked, so that no flow can enter or leave the duct. This 
blocking results in an adverse pressure gradient, causing flow reversal near the 
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stationary wall. Translation of the variables, i.e. y" = (1 - y), u" = (1 - u), gives the 
zero net flow condition, in terms of the variables of the present formulation, as 

Jolu(y; f),/?)dy = 1. (4.9) 

With the approximation that 

M y ;  f ) , P )  = Zc"(y; t , P )  (4.10) 

where the function dC) is given in (3.38), the condition of (4.9) becomes 

(8- 1) CAE, 8) ([(2-/9){W(5-/3) +Ao(/?)} + (B- 1)yo(/?)I + . . a ) ,  
(4.11a) 

where (4.11 b) 

Because of (4.9), B must change as the (translated) moving wall Reynolds number 

/?@) = 1 +@), with a(& +- 0 as f) -+ CO, ( 4 . 1 2 ~ )  

changes, i.e. /? = /?(a). Consider that 

such that a,(f) , /?(f)))  E a r ( f ) ,  1) [1+a(f))+ ... 3, 

with (4.12b) 

Substitution of (4.12a, b) into (4.11) yields 

a(R) ={g+Ao(l))a,(R, 1) [1+O(c , ( f ) ,  1))I. (4.13) 

Based on these results, the friction coefficient is given by 

C,(R) = C p )  ={ 2Ka7(a)}2 

log logfl- {(Jo - p) +Yo( 1) -A (1 - - - 2 K a  [1+2 )I+...]. (4.14) 
- log2Iz log Iz  

Huey t Williamson (1974) present pressure gradient measurements in the form 

(4.15) 

For the case of zero net flow, the maximum velocity (cf. 8 3.5) can be expressed as 

N 1 + (8 + [ 1 + . , .]. 
log €2 - (4.16) 

A comparison of (4.15) with the experimental measurements of P"(Re) gives 

GO(1) = {(Jo-3)+Yo(l)-3Ao(l)}  i 2.7 

*{Yo(l)-#Ao(l)} = Go(l)-(Jo-#) + 1.2. 

(4.17a) 

(4.17b) 
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FIQURX 8. Comparison of asymptotic theory with Huey & Williamson's (1974) data for the 
zero net flow problem. - , theory; A, (translated) maximum velocity measurement, 
(?A,,,- 1) x 10; 0, pressure gradient measurement, P" x 0, friction coefficient calculation, 
c,x loo. 

Further, a comparison of (4.16) with the measurements of u,,,(R) gives 

{g +A,( l)} + 0.78. (4.18) 

Thus, (4.17) and (4.18) provide the following integral conditions that D(y; 1) must 
satisfy : 

[';D(y; 1)dy = Yo(l) i 1.4; D(y; 1)dy = b(1) = 0.11. (4.19) 
u o  

The above comparisons for P"(R) and (urn@) - 1) are shown in figure 8. Also shown in 
this figure is the friction coefficient of (4.14), based upon the values of Yo(l) and 
A,(1) of (4.19), in comparison with that determined by the calculations of Huey 
& Williamson. These calculations of C,(R), deduced by the method of Robertson & 
Johnson (1970), appear slightly too high, as do the calculated values of Robertson 
& Johnson for C,(R) for plane Couette flow (cf. 0 4.1). 

Consider now the behaviour of yd(/3) as /3 -+ 1. If a = (/3 - 1) and S(a) = (1 - yd(/3)), 
with a, &(a) + 0, then i t  is determined, from (3.44a), that 

1 
6(a) = - aq1+ O(a4)l. (4.20) 

4 2  

Since y,(& = 1//3, as previously noted, in the limit of (p- 1) -+ 0, 

(4.21) 

Finally, it is noted that (3.44b), in this limit, yields just the identity @,(l; 1) = Y,(l). 

1 
{Yn<8)-Yd(rB)l= .J2 (8- 1 ) + [ 1 + W -  1)*)l. 
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5. Conclusions 
By the introduction of a suitable modification of the conventional eddy-viscosity 

closure model for turbulent shear flow in plane ducts, an asymptotic solution is 
obtained which is continuous for the complete family of Couette-Poiseuille flows 
(0 4 /3 < 2) as the Reynolds number tends to infinity. It is shown that, by the inclusion 
of higher-order terms in the asymptotic expansion (Fol(y; /?), ...), the position of zero 
Reynolds stress (y,(P)) is displaced farther from the stationary wall than is the position 
of maximum velocity (ym(/3)) for 1 < /? < 2 (i.e. Ho(/3) = - (2 -8) < O), in agreement 
with experimental observations. Previously, this difference in y,(/3) from ym(/3) has not 
been taken into account in the analysis of Couette-Poiseuille flows. 

Through the combination of the matched asymptotic expansions of the velocity of 
the core, stationary wall and moving wall regions of the flow field, a composite expan- 
sion is obtained for the velocity field, which is uniformly valid across the whole duct as 
the Reynolds number tends to infinity. This composite expansion is found to be in 
excellent agreement with the available velocity measurements for plane Couette flow 
(/3 = 0). The matching requirements at each wall region lead to a skin friction law of 
the same asymptotic form as obtained previously for plane Poiseuille flow. This form 
gives a good representation of the skin friction measurements for plane Couette flow 
(/3 = 0), plane Poiseuille flow (83  2), and the case of zero net flow (/3 N- I). Although the 
asymptotic theory cannot provide the closure equations for a given turbulent shear 
flow problem, i t  does provide certain restrictive conditions which an assumed closure 
model must satisfy, as is shown in this work and elsewhere. 

Apart from significance in its own right, the present analysis should be useful for 
(i) the further development of turbulent lubrication theory, which, up to now, has 
relied almost entirely on numerical solutions; and (ii) guidance in the closure formula- 
tions of further numerical computations. 

The work presented in this paper was supported in part by the United States Air 
Force Office of Scientific Research under Grant AFOSR 77-3362 and in part by the 
National Science Foundation under Grant ENG 77-18730. The authors wish to 
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